May 15, 2003
Chemical Genetic Modifier Screens: Small Molecule Trichostatin Suppressors as Probes of Intracellular Histone and Tubulin Acetylation
Histone deacetylase (HDAC) inhibitors are being developed as new clinical agents in cancer therapy, in part because they interrupt cell cycle progression in transformed cell lines. To examine cell cycle arrest induced by HDAC inhibitor trichostatin A (TSA), a cytoblot cell-based screen was used to identify small molecule suppressors of this process. TSA suppressors (ITSAs) counteract TSA-induced cell cycle arrest, histone acetylation, and transcriptional activation. Hydroxamic acid-based HDAC inhibitors like TSA and suberoylanilide hydroxamic acid (SAHA) promote acetylation of cytoplasmic alpha-tubulin as well as histones, a modification also suppressed by ITSAs. Although tubulin acetylation appears irrelevant to cell cycle progression and transcription, it may play a role in other cellular processes. Small molecule suppressors such as the ITSAs, available from chemical genetic suppressor screens, may prove to be valuable probes of many biological processes.
Technorati Tags:
Publications / Computational biology / Combinatorial chemistry / HDAC inhibitors / Wing H Wong / Igor Leykin
January 12, 2003
Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array
A global picture of gene expression in the common immune-mediated skin disease, psoriasis, was obtained by interrogating the full set of Affymetrix GeneChips with psoriatic and control skin samples. We identified 1,338 genes with potential roles in psoriasis pathogenesis/maintenance and revealed many perturbed biological processes. A novel method for identifying transcription factor binding sites was also developed and applied to this dataset. Many of the identified sites are known to be involved in immune response and proliferation. An in-depth study of immune system genes revealed the presence of many regulating cytokines and chemokines within involved skin, and markers of dendritic cell (DC) activation in uninvolved skin. The combination of many CCR7+ T cells, DCs, and regulating chemokines in psoriatic lesions, together with the detection of DC activation markers in nonlesional skin, strongly suggests that the spatial organization of T cells and DCs could sustain chronic T-cell activation and persistence within focal skin regions.
Technorati Tags:
Publications / Computational biolgy / Psoriasis / Gene expression analysis / Immune system / Wing Hung Wong / Xianghong Jasmine Zhou / Ann M. Bowcock / Alan Krueger
Subscribe to:
Posts (Atom)